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LIQUID SLOSHING IN A SPHERICAL TANK FILLED 
TO AN ARBITRARY DEPTH 

SUMMARY 

The kernel  function fo r  liquid sloshing in a spherical  tank 

fiiied to an  a rb i t r a ry  depth i s  shown to be reiated to the Green ' s  

function of the second kind and i s  constructed successfully by numer-  

ical  means.  Natural frequencies a re  then computed a s  eigen values 

of a mat r ix .  Eigen functions a r e  obtained a t  a finite number of points 

a s  the eigen vectors which a r e  sufficient for  approximate evaluation 

of the force acting on the container. Simple formulas  of force  and 

moment  a r e  given f o r  both pitching and translational oscillation 

under a fixed gravitational field. Finally, comparisons of predicted 

natural  frequencies and force response with experiments for  a 

quarter-ful l  tank a r e  a lso given. 

L .. , , . .... 



2 I 

INTRODUCTION 

Disturbances on a rocket or  miss i le  can induce SiOS'ri'li-ig G f  

fuel in a partially filled tank. 

the vehicle and in some cases  can be detr imental  to the t ra jec tory  or  

even resu l t s  in loss  of control. 

has  been widely investigated with and without damping. To facilitate 

dynamic analysis,  an equivalent mechanical model for  c i rcu lar  tank 

is given in Reference 2. 

numerical  method was given in Reference 1. However, the problem 

is only solved fo r  three special  cases ,  namely, near ly  full ,  near ly  

empty, and half-full tanks. 

Green 's  function of the second kind (Neumann function) for  the spher-  

ica l  bowl. 

spherical  bowl is given in Reference 3 ,  it is doubtful that  a simple 

expression for the Green's function of the second kind exis ts  in the 

toroidal coordinates,  since the normal derivative on the spherical  

cap i s  a combination of two derivatives in this coordinate system. 

The sequence method given in Reference 4 i s  convergent for  Green's 

function of the first kind but may diverge for the second kind, 

m a y  r e s o r t  to Liouville-Neumann method ( s e r i e s  method, Ref. 5 )  and 

prove it converges. 

It in tu rn  exer t s  excitation fo rces  on 

Sloshing in a c i rcu lar  cylindrical tank 

F o r  a spherical  tank, an ingenious semi-  

The restr ic t ion is due to the lack of the 

Although the Green 's  function of the f i r s t  kind for  the 

One 

But when the Green 's  function on the boundary 
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is des i red ,  the kernel  function i s  singular; thus it becomes inc reas -  

ingly more  difficult to evaluate when m o r e  t e r m s  a r e  needed. If we 

do not employ the Neumaim funct im,  an illtegral equation on the f r e e  

surface i s  a l so  obtained. Unfortunately, the eigen functions no longer 

satisfy the necessary  orthogonal relationship (Ref. 6 ) ,  thus they a r e  

the des i red  eigen functions only if  the Neumann function is employed 

(Ref, l ) ,  In this paper,  a numerical  scheme is devised to determine 

the des i red  kernel  function, which is one component of the Neumann 

function, and then apply the same procedure a s  given in Reference 1 

to evaluate the sloshing character is t ics .  

required to calculate the pressure  on the wall, although in principle 

Considerably more  work is 

this can be done, 

After the theory in the present paper w a s  developed, some 

other approaches have been published. One approach (Ref. 7 )  seeks 

the variational solution based on Hamilton's principle through Rayleigh- 

Ritz method':'. Since only an  integrated f r e e  surface condition was im- 

posed, it i s  somewhat doubtful that accura te  prediction of force  response 

o r  p r e s s u r e  can be a s su red  (Ref, 8 ) ,  although e r r o r  in the lowest mode 

frequency was l e s s  than one per  cent f o r  a flat  cylindrical tank. 

another approach (Ref, 9 )  finite difference techniques were employed to  

In 

-~ _ _  
.L *'' This method has been applied to spherical  tank by Riley and Trembath 

whose resu l t s  a r e  shown in Figure 6 .  
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seek eigen values in a boundary condition by three different methods. 

Method I and Method 111 (Ref. 9 )  use ei ther  Rayleigh quotient o r  Rayleigh- 

Ritz procedure,  but a r e  somewhat infer ior  (Ref. 9 )  to the Rayleigh-Ritz 

procedure applied to the continuous domain. Method I1  (Ref. 9 )  converts 

the problem into an equivalent matrix eigen value problem by eliminating 

the points outside the f r ee  surface through an inversion of ma t r ix  if the 

number of the other points i s  small ,  o r  through an influence coefficient 

type calculation if otherwise.  

on the f r ee  sur face ,  N boundary value problems should be f i r s t  solved 

(say by successive over-relaxation) before reduction to the eigen value 

problem of a N x N mat r ix .  Depending to a large extent on the number 

of net points required for  a desired accuracy (say ,  3 f igures  in frequen- 

c ies  and force response) ,  the computing t ime (based on estimation on 

a G E  225 computer)* of the l a s t  method for  a spherical  tank seems  to  

be comparable to the present  method. 

fu r the r  (significant) acceleration of the ra te  of convergence of the sub- 

routines in the present  method in the present  problem may  be quite 

difficult, an alternative numerical  scheme devised i s  expected to reduce 

In the la t te r  case  if there  a r e  N points 

On the other hand, although 

4. ,,. 
It i s  estimated under the assumption that there  a r e  20 f r e e  surface 
points and 300 total net points with 120 i terations for  each boundary 
value problem (based on experience of a s imi la r  problem) and 
average speed f o r  5 multiplications , 4 additions , and one additional 
multiplication o r  division a t  each point in each i teration. There  a r e  
other es t imates  based on experiences which yield approximately the 
s a m e  magnitude of computing time. 
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the computing t ime to one-half o r  fur ther .  Finally,  Reference 10 has  

a lso been published in which the kernel function i s  constructed empi r i -  

cally, based on knowledge for half-fu!! ar,d fu l l  tank: 

The purpose of the present paper is  mainly to predict  the natural  

frequencies and force response and to  show how kernel  functions a r e  r e -  

lated to  the Neumann function on the boundary and can be constructed 

numerically fo r  a spherical  tank. Analogous extension to other con- 

figurations o r  other problems may be possible but will not be t reated 

in this paper .  
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MATHEMATICAL FORMULATION 

Kernel  Function 

L e t  G(P,Q) and G,(P,Q) be the Green ' s  function of the second 

- -- A. 

kind f o r  the inter ior  of the given spherical  bowl ( F i g .  1 )  arid the sphere,  

respect ively:  (a) Both G(P, Q) andG,(pO Q) possess continuous second 

der ivat ives  and sat isfy the Laplace equation inside the bowl and the 

sphe re ,  respect ively,  except the point P=a ; (b )  30th G and Go possess 

a unit sink, -- 
whole surface of the sphere ,  % = f i t  = - on the sur face  of the 

bowl, R and F; (d) G, be that given in Reference 7 ;  G(P, Q )  sa t i s f ies  

the normalizing condition J G ( q  Q )  d ~ ,  = 0 (Ref. 11). Following 

on the I / at P -  Q inside the bowl; ( c )  %=- - 4ru2 4iY RPQ 

-1 
AR +Ar  

R+F 

these conditions, i t  is well known (Ref. 11)  that  the Neumann function G 

i s  symmet r i c  as well as Go , i. e . ,  G(PO G?) G(Q, P )  , Go (e Q)= C,(Q, P) 

When P, Q a r e  both in te r ior  points, analogous to  the proof of symmet r i c  

p rope r t i e s ,  one has  

which is an  integral  equation governing G(P, Q) where P, Q 

the bowl, not on F and R .  

i s  inside 
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F o r  values of the Green 's  function with P, Q (P#Q) both on F,  

not on R,  apply directly the divergence theorem to the surface shown 

in F igure  2. Since there  is an infinitesimal semi-sphere  around the 

sinks at P and Q respectively,  one finds 

P # r * Q  
By making P and Q in Equation [ l ]  approach P and Q on the f r e e  s u r -  

face along i ts  normal ,  Equation 117 can  be reduced to Equation [2] .  

In Reference 1,  for  fuel sloshing in a spherical  tank, only those 

eigen functions proportional to cos 8 a r e  needed: one shall  see  in the 

- -  
next section that it 'is sufficient to know one component H(P, Q) of the 

Neumann function G(e (3) to determine the sloshing charac te r i s t ics .  

Let 

121  

Since G and G, a r e  symmetr ic  functions, /-/ , H, 

symmetr ic  functions, 

and thus 4, a r e  
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- -  
F o r  points P, Q corresponding to P and Q respect ively,  inside 

the spherical  bowl, Equation [ l]  can be integrated to  yield 

/ 

A, (e Q> = -j- 3 (7 a) H ,  (P, T )  d< -[%(E a) hl P, 2) d< 
F 7 

f o r  which the revers ing  of o rde r s  of integration a r e  appiied and can be 

justified by car ry ing  out the details. The function F is defined by 

a 6  which is  a nonsymmetric function a s  - 
Similar ly ,  if both P and Q a r e  on F,  not on R ,  integration of 

% = O  , a lmost  everywhere on F,  hence fo r  half-sphere hl(PPj=OJ #=He 

which i s  in agreement  with Reference 1. 

B. Eigen Functions 

The eigen functions 6 are  assumed to possess  the following 

proper t ies :  ( a )  4 i s  regular  inside the bowl and V% = 0 

The l a s t  condition i s  appropriate f o r  translational oscillation of the tank. 
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1 

Analogous to Equations[l] and [21 

~ { P )  =/G(TP> % 5$(dds 

when P is inside the spherical  bowl, R +  F. 

F 

5 #,(P)= { G(I ,  P) 2 $(I) dSz 
F 

when P i s  on F. 

Analogous to Equations 141 and 153 by integration 

- %(a=[ fl(3 PI t m  dG , P not on F. F 
- b 

+g(p)= c/(p.r j  zCpip+‘ , P on F. 
0 

- -  
This shows only H ( P , Q )  i s  needed for  the pertinent eigen functions. 

Sloshing F o r c e  and P r e s s u r e  in Translational Oscillation 

By introducing a displacement potential relative to the tank 

- C. 

%-2%(f)$(c$’& the sloshing force acting on the container i s  derived 

f r o m  the Lagrangian’s equation in  Reference 1, namely 

17 3 

18 1 
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The velocity potential 

The p r e s s u r e  on the container 

within the accuracy of the linearized theory. Equation I l l ]  can  a l so  

be obtained directly by integration of p r e s s u r e  (Appendix V ) .  

Once 6 on F i s  evaluated, one may  employ ci, to obtain 

+.,(PI f r o m  

% ( P ) =  d ( f , ~ )  X g(r)dg -J- ~ ( r ,  PI g ( l ) c / ~  
F F 

constant on R and 2 = a& dG The integral  on R dropped out a s  - = 0 

on R. 

3% 

F o r  P on R ,  not on F, the integrands of the integrals  in 

Equation [14b] a r e  nonsingular, hence $ ( P )  

well-known numerical methods. 

the value of j$(fi) may be obtained by evaluation of the integral  by 

midpoint formula.  

can be calculated by 

F o r  contact points both on R and F,  
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The Moment Under Translational Oscillation - D. 

F o r  translational oscillations, the velocity potential is propor - 

It produces a horizon- tional to cos 6 

tal  force < in the x-direction and a couple C, about the center  of 

the tank ( F i g .  3a).  

symmetry .  

and the flow is  antisymmetric.  

There is no moment around z axis or x axis by 

The moment about a fixed point 0’ on the z axis i s  

It is not necessary  to determine 1 when the force  6 and the moment 

mt 
all the p re s su re  forces  acting on the shell  pas ses  through its cen ter ,  

hence produces no moment about it,  i .  e . ,  

x 

a r e  the desired information in dynamic problems. F o r  a sphere,  

Therefore  the moment about 0’ i s  simply 

This statement can be easi ly  shown by integration of the moments  due 

to p r e s s u r e  on the wall. 

E.  Pitching. Oscillation 

Consider a pitching oscillation of amplitude 9 around an axis 

which is paral le l  to y axis and at a ver t ical  distance .Q below y axis 

(Fig. 3b). In F ieure  3b. it i s  clear that 



The radial  distance of any point (x ,y ,  z )  f r o m  the axis of ro-  

The velocity components on the sphere due to  tation isd- . 

rotation a r e :  

The boundary condition on the wetted sphere ,  R ,  i s  

= &J ( S;@+ case) 

This i s  equivalent to a translational oscillation of amplitude /J=$iY 

in the direction of x. 

i s  the same in the presence of a fixed gravitational f ield,  the resu l t  fo r  

translational oscillation can be applied. There is an additional static 

tipping force  which can be obtained by integrating the additional s ta t ic  

p re s su re  p’ over R (Ref. 14) 

Since the boundary condition on the f r e e  surface 

/ 

P = P Y X B y  

This  force  ac t s  along an x axis rotating with the tank. 
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Similar ly ,  there  is an additional moment 

The total force  along an axis x rotating with the tank is 

The moment about 0’ i s  approximately 

The total force in the horizontal direction i s  s t i l l  When there  i s  

tank fixed axial acceleration, the method of superposition presented in 

Reference 14 can be used to determine the x-force.  

6 

An equivalent mechanical mQdel fo r  sloshing in  spherical  tank 

is given in Reference 15, but unfortunately the extrapolation to include 

damping was not a s  successful a s  in the case  of a cylindrical  tank 

(Ref. 2 )  and could only be used for  o rde r  of magnitude es t imates  (Ref. 15). 



NUMERICAL METHOD 

A. Approximate Determination of the Kernel Function -- a t  a 
Finite Number of Points 

Numerical quadrature formula will be used to  replace the in- 

tegra l  Equation [67 by a ma t r ix  equation. There  i s  a minor  difficulty 

- -  
due to the presence of logari thm’s singularity a t  P =  I or fi. - -6 ’ 

t h e  lat ter of which is the integration variable.  In the original manu- 

scr ip t ,  an attempt w a s  made to devise a m o r e  sophisticated quadra-  

tu re  formula,  expecting higher accuracy. Unfortunately, i t  s e e m s  to  

contain integrals difficult to  express  in known functions, o r  requi re  

very careful  process  of taking limit under the integral  signs.  F u r t h e r ,  

the apparent higher o rde r  t e r m s  may be actually very large and not 

negligible. To reduce total effort, the present  numerical  scheme 

based  on midpoint formula i s  devised. 

The integrals are  divided into N equal pa r t s  (N= 2 0  will be 

used)  and the field point is  one of the centers  of the intervals .  

s imple midpoint formula  will not be applicable when the logarithmic 

A 

singularity appears  a t  the midpoint, but if the interval  i s  subdivided 

into four intervals (or  m o r e )  the e r r o r  may become acceptable.  F o r  

example,  consider the integral  
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= A&& - ?.5;30/ A 

The e r r o r  is . 1 6 6  , F o r  d = 1/20 (N=20,  b = l ) ,  the relative e r r o r  

is  l e s s  than 0.1870. 

Let  b-1,  

then Equation 161 can be rewrit ten a s  

rw 

(note the o rde r  of i & j )  9.3 

Two s imi la r  numerical  schemes will be presented. The f i r s t  scheme 

was actually employed in the example, while the second scheme is the 

alternative scheme requiring much l e s s  computer t ime. 

Fn scheme one evaluates 3. 

point midpoint formula.  

midpoint of the ith interval ( i= 1,2,  . . . , N).  

gration variable located a t  the midpoint of the subinterval ( j=  1 , 2 ,  . ~ ~ , 4 N ) .  

In the f i r s t  

and 8' a t  N x 4N points, assuming four 

ith point on the f r e e  sur face  i s  located a t  the 

d 'd 

j represents  the inte- 
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I 

Thus 

To descr ibe  the second (al ternate)  s cheme ,  consider  the whole 

square  domain to be composed of N x N squa re  subdomains.  

diagonal squa res ,  3.- and e. a r e  evaluated a s  in the f i r s t  scheme 

(four values in each squa re ) ,  but they will take the value of the functions 

In all the 

(0 ) (0) 

d t t  

a t  the center  of each square  in off-diagonal domain, which a r e  a l so  eval-  

uated. These data wil l  be denoted by 7 , H.. . Total number of 

evaluation (both 4 .  and $' ) a r e  N x 4N in the f i r s t  s cheme ,  but 

N x N + 3N in the second scheme (4 point midpoint formula  f o r  diagonal 

integral) .  F o r  instance consider 

-(b) 

9. v 
(6) 

d 6 

being given by Equations ( 2  la], 12 lb], P - p k  In the f i r s t  s cheme ,  
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given by Equation 

Equations [23a] - [23d] can be condensed into the single formula  with 

f ,  given by Equation [21b] and one finds d 

Simi lar ly ,  the second integral  on the r ight  side of Equation 1201 is 

where 



(0) * (*) (0) - to) 
In the second scheme,  replace % by si and 4 .  by ey , 4 

The integral  Equation [ 6 ]  is therefore reduced approximately to the 

ma t r ix  equation, 

f [C]=- [M3 - - I C ]  [ D ]  

the solution of which is  

(11 i s  a unit mat r ix ,  [ C ] ,  [MJ, ID] a r e  square ma t r i ces  of which the 

elements  of ith row and lth column a r e  C y  , MV , DEp , respectively.  

As a check of accuracy,  the symmetr ic  property 

hold approximately, 

rect ive t e r m  in the kernel function, i. e . ,  

should bl 

C,.. =c/.i  6 
Then we can use the average value fo r  the c o r -  

The kerne l  function i s  therefore  

- 
c.. being known a t  discrete  points corresponding to both d d 

given by equation [Zla] . 

in the accurate  and rapid evaluation of the function 

The difficulty of the problem, however, l i es  

(d (0) 3 and e . v &- 

[Z 52 
I 
I 

1273 



Determination of Eigen Vectors, yfn’ and Natural  Frequencies  -- B. 

The eigen function takes the value E( f )  on F,  which is governed 

by 

There  

JZ,= G2Q - , 9 being effective gravitational accelerat ion 
9 

Analogous to Section A, the matrix approximation of Equation 1291 is 

where the factor 1 / 2  on the right-hand side is in agreement  with Refer-  

ence 1, since the strength of the Green’s  function has  not been doubled 

in this paper .  The elements of the ma t r ix  A i s  

where i ,  k corresponds to /9., &, both given by Equation [21a] and 

both vary f r o m  1 to N. 
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I 

(0) 

In the f i r s t  scheme,  ff{# 

subdomain to  reduce computing time and is approximated by 

i s  not evaluated at the center  of any square 

where 
I 

(property of symmet ry )  

I (0, . (0) 
in the second scheme,  repiace dq by A$ j i = l  to N ,  j = 1 to 4Nj. 

N of Equation [30] yields the b The la rges t  eigen values 
2J2,x 

~ 

l ea s t  resonant frequency parameters .  3, . And the eigen vectors will 

be employed in evaluation of the force response.  
~ 

Evaluation of F o r c e  

The sloshing fo rce  for  translational oscillation i s  

- -- C. 

where 

-1 13 
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The nondimensional force 

D. Prec is ion  Problem 

The functions 4 ,  H, have been first  expressed  in t e r m s  of 

complete ell iptical  integrals of the f i r s t  kind, the second kind, and 

the third kind and of simple elementary functions (Appendix I ,  11). 

The ell iptical  integrals of the third kind a r e  expressed in t e r m s  of 

Heuman’s Lamda function A,, (Ref. 12), which i s  again expressed  

ei ther  in a s e r i e s  f o r m  o r  in a close f o r m  of incomplete and com- 

plete ell iptical  integrals of the f i r s t  and second kind, i. e .  , 

In 3 j  and HO3 

complete lo s s  of significant f igures in subtractions for  f i ,  f -  d 

smal l .  

but it was found that the se r i e s  is  very slowly convergent when the 

parameter  i s  near  unity, especially if double precis ion o r  twelve 

significant f igures  a r e  sought. 

methods for  evaluating elliptic integrals (Ref. 13), which converges 

to within four  o r  five iterations. Although the complete elliptic 

integrals  can be computed very rapidly, the subroutine N E F F  (Ap- 

pendix 111) f o r  incomplete integrals and a difference related to i t  

, a ser ious precision problem occurs  due to a lmost  

both 

At f i r s t ,  the se r i e s  fo rm of the Lamda function was used,  

Then i t  i s  resor ted  to the i terat ive 
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consumes 8 seconds (used twice),  while the total t ime fo r  evaluating 

J,, H, i s  only 25 secords at each point, a l l  on the GE 225 computer.  

Longer t ime would be required for higher precis ion a s  the number of 

i terations increase s . 
To increase the precision, analytic subtractions a r e  made SO 

that no significant subtraction remains,  if possible. Noniterative sub- 

tractions in which four o r  l e s s  figures are  lost  a r e  acceptable if four 

o r  m o r e  significant f igures  out of eight (single regular precis ion on 

the machine) i s  desired.  The technique can be i l lustrated by the 

following cases :  

(1) Let  (A - B) ,  the difference of A and B i s  smal l  but can be 

expressed  analytically without subtraction. Then, fo r  ex- 

-/ ( A - 0 )  should be evaluated f r o m  - I 1  ample,  - - - 
J i i G  nfi JX+6 

( 2 )  Let  & I s  be small (positive) quantities containing no sub- 

traction, then (/+$,)(/+i&) ....- (/t&,,n) - /  should be evaluated 

by repeated application of the simple relation that 

( I+A) ( / *Rd- /  =&,it& f 4 g 2  

( 3 )  To subtract  a des i red  quantity f rom a known function may 

require  a new subroutine f o r  this function performing s ig-  

nificant subtraction analytically, e. g., N E F F .  (Appendix 111) 

I 
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Aside f r o m  relatively mechanical operations, the device of DKEF and 

N E F F  subroutines,  the following relation was expedient (Appendix IV). 

/7N and a r e  defined by Equations [IV-63,  [IV-81, respectively.  

It i s  noted that,  af ter  a small manipulation, d i rec t  numerical  

a t  sampling points of the ent i re  integration of the integrals 5, Hod 

domain of fL., p6 was  a l so  computed by Weddle's rule .  

o r  more  significant f igures  can be obtained, it i s  deemed too slow over 

the major  pa r t  of the domain. 

minutes respectively for  6 

intervals ,  o r  a relative e r r o r  of about 

the right lower corner  of the domain ( ~ , p d  near  unity). These values 

a t  sampling points a r e  valuable a s  they serve  a s  a good check on the 

present  computer program,  which evaluates F I ,  F2, F 3 ,  H O I ,  HO2, 

H03, a l l  together a t  a ra te  of 25 seconds per  net point (on the same 

computer with an accuracy of four o r  m o r e  significant f igures) .  

Although four  

For  instance it took about 5 and 2 -  1 / 2  

and e3 on a GE 225 computer with 384 

otherwise a t  a point nea r  
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EXAMPLE: FUEL SLOSHING IN A QUARTER-FULL TANK 

F i r s t ,  30 and Hoare generated, then the ma t r ix  Equation c251 is 

solved, The correct ive p a r t  Ci. to the kernel  function obtained i s  sym-  

me t r i c  a lmost  to four f igures  (Table I ) .  

points a r e  l e s s  than 0.370 o r  bet ter .  

sentative, the values of c. 

d 
The relative e r r o r s  in the sample 

Since these values a r e  quite r e p r e -  

a t  other points a r e  not shown in the table. 
d 

Next, the eigen values and eigen vectors of Equation 1307 and then 

the force  response of Equation [31] a r e  calculated. 

four  eigen values a r e  9.48863, 2.0591201, 1.2003387, 0.84773955, re- 

spectively, 

experiments in F igures  4a and 4b. 

possible experimental  e r r o r ,  although it may be slightly l e s s  than the 

actual value, noting that natural  frequencies a r e  somewhat sma l l e r  fo r  

l a r g e r  amplitudes of oscillation. 

The calculated f i r s t  

The corresponding frequency pa rame te r s  a r e  compared with 

It s eems  that the values a r e  well within 

The constants needed to calculate the force  response a r e  compared 

with graphical values given by Reference 1 in Table 11. Since the coefficient 

9;/c; is in agreement  with Budiansky’s value, the main difference l ies  

in the value of first natural  frequency fo r  frequency range in i t s  neighbor- 

hood. 

confirmed experimentally in this case,  only the present  theory is compared 

with experiments (Ref. 15) in Figure 5. The difference between theory and 

experiments ,  perhaps,  is essentially due to finite amplitude effect. But 

the agreement  seems to be quite reasonable. 

Since graphically interpolated value i s  l e s s  re l iable ,  which is  a l so  
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14; ct n l  s,, = -- -L- , Y  I 
I 

TABLE 11: Comparison of Constants  wi th  Data 
from R e f e r e n c e  I 

I3 udi 2: sky I Budiarisky 
Chu  I ( F i g . 9 ,  Ref .  1 )  Chu ( F i g .  10 ,  R e f .  I )  

-- 

0 . 2 4 9 5 8 6  

2 I 5.6077376 I 5 . 4 4 4 3  1 0.44687 x 1 0 - 3  0 . 4 1 7 2  x 1 0 - 3  
1 
__ - -_ -_I_ --_ - - - - - - - - -- - - - __-___ 1 i 

3 9.61'37893 9 . 2 3 2 5  0 . 4 4 7 5 8  x 0 . 7 6 6 4  x 

1 
I 

- - -  0. 112633 x - - -  ' I  ' 4 , 13.620935 
I I 

I 
A 
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CONCLUSIONS AND DISCUSSIONS 

The present  theoyy arid compiiter prograr;; see: t~ yield 

satisfactory predictions of natural  frequencies and force response 

in comparison with experiments for a quarter-ful l  spherical  tank. 

The computer program is  expected to be applicable to other liquid 

depths,  although not beyond improvement in efficiency. The resu l t s  

a l so  confirm the theory that the kernel function i s  related to the 

Neumann function on the boundary and that this function can be con- 

s t ructed by adding a correct ive part to a known Green 's  function 

numerically for  pract ical  applications. Extensions to other prob- 

lemsmay be possible, but one must resolve the precis ion problem 

if it  ex is t s  and one may a l so  find a more  sophisticated numerical  

scheme to  be more  desirable ,  either in accuracy o r  in efficiency. 
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NOMENCLATURE 

a = radius  of the spherical  tank 

- 'rea of undisturbed free surface 

a r e a  of wetted surface of sphere  

' F  - 
AR = 

b = maximum value of p , radius  of f r e e  surface 

d = tank d iameter ,  2a 

( c .  f .  Appendix 111) 

DKEF = a function in the computer p rogram (c . f .  Appendix 111) 

F = the undisturbed f r e e  surface 

6 = horizontal  fo rce  acting on the tank due to  fuel sloshing 

.r,(p,pj = integrated kerne l  function re la ted  to 

J = effective gravitational acce lera t ion  

87 - h, (pz . fp  
G(eQ)  = 

G.(f?Q) = 

Green ' s  function of the second kind fo r  the spher ica l  bowl 

Green ' s  function of the second kind for  a sphere  

h(t?Q) - additional pa r t  of Green's function fo r  spher ica l  tank other  
than half -f ull 

h,(Pf') = integrated kerne l  function re la ted  to /t (f? Q) 

H(/? f?) integrated kerne l  function re la ted  to  G(P,  0) = 



3 2  

n =  

9, = 

9, = 

6, f 
Qs 

point of integration, except  I being the unit niatr ix  

complete elliptic integrals of f i r s t  and second kind, 
r e  spec t ive ly 

total  m a s s  of liquid (fuel) 

outer  no rma l  

a function in  the computer p rogram ( c ,  f .  Appendix I I I )  

(c.  f .  Appendix 111) 

a r ing corresponding to p ( C  $!,e) 

2 W  
p t  P’ 

2a 

./cpP-bzf+$(f -f’f+4pph‘ 
analogous to  P but related to Q and I, respect ively 

defined by Equation [I- 1 Oa] 

spherical  coordinates 

the wetted spher ica l  surface before sloshing unless  defined by 11-21 

defined by Equations [I-lOh] , [I-lob] , [11-5b], respect ively 

distance between the points P and Q 

element  of surface 

dshe + f d f  on F 

horizontal  displacement of container in the x-direct ion 

ver t ica l  distance of f r ee  surface f r o m  center  of sphe re ;  
positive upward 

defined by Equation [12b] , 1 &P(I)d% 
F 
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Bn defined by Equation [lZa] 

cos  2 = angle between the vectors 9 and op,( 

= Heuman's  lambda function (Ref. 9 )  

, respect ively 

= complete elliptic integrals of the th i rd  kind (Ref. 9 )  

= rad ia l  distance f r o m  a point on the f r e e  surface to the 
cep~ter nf the f r ee  surface 

- P of integration variable 

= density of liquid (fuel) 

= velocity potential, v$" =$ , 9 being the velocity vector 

= nth eigen function 

= nth integrated eigen function re la ted  to  4 

= q SPnp 
= f requency of oscillation 

= nth resonant  frequency 

'= Un2Qh , nth resonant frequency pa rame te r  

Subscr ipts  

F related to  surface F 

i , j , k  re la ted  to  pi, 4, f# , respect ively 

I re la ted to  integration var iables  

P related to the point P(G$?!e) o r  P(&) 

Q re la ted  to the point Q(q $ 8 )  o r  a(/&) 

R related to  surface R 

---- 



APPENDIX I. ANALYTIC EXPRESSION FOR 11, ( f ;  r ' ) 
~ 

The Green ' s  function of the second kind f o r  a whole sphere  I 
(Ref. 16) i s  I 

whe r e  i 

When P and P' both on F,  I 

Making use of a new variable /s= * F -  - cT and a new pa rame te r  P,= - 2 4 7  
P+P' 2 



where 

where D(,9,) is DKEF ( 3 )  given by  Appendix 111. 

By taking limiting process ,  

Similar ly  

where 

Also, this  can be evaluated more accurately by 
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[I-6a] 

[I-Sb] 

[I-77 

[I-7a] 
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r 
When p o r  f is z e r o  

From integration by p a r t s ,  

r 1-81 
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where 

By using par t ia l  f ract ions,  the variable and the definition of r (d ,gz )  2 

( c . f .  Ref. 9),one finds 



where the well-known complete elliptic integral  of the third kind is  

defined by 

[I-8b] 

I 

11-91 
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where 

Q1-h2 = z; 
Hence 



/ 

When f‘ o r  f i s  zero ,  

It was found that there  is a precision problem in  Equationl1-8j 

when P and a r e  near  zero.  This  might be anticipated a s  there  i s  

a very smal l  denominator proportional to ‘ff’ ’* and the resu l t  i s  

expected to be small  in view of Equation [I-S’J, 

ious manipulations with Equation [I-89 to resolve the precis ion problem, 

/ 

After somewhat labor-  

n the following form (with b =  1): is obtained 

where 

[I-101 

(I- 1 Ob] 

[I- 1 oc) 



[I - 1 od3 

R 4 = - 2  ?&- 

A, > I ,  A= 4 0 

It mus t  be noted that (A,-/,) , (Ai-/), (fl2-1) 
by d i rec t  subtractions,  but by accurate formulas .  

[ I - l O f ]  

[I-lOh] 

[I-lOi] 

[ I - lo j l  

a r e  evaluated not 

[I- 1 Ok] 

1 
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[I- 1 0  11 

(p-f') can be calculated without loss of significant f igure.  It i s  

a l so  noted that for  small  zF 

by -$b o r  (1-a'~ by -$ with b = / .  

, one should replace (h4-6'a") = L2(1c4t) 

It i s  recalled that Budiansky's technique of differentiation 

under integral  sign does not seem to lead  to simple resu l t s ,  due to  

the presence of non-zero 

center  of the spherical  tank. 

IF , the relative depth measured  f r o m  the 



APPENDIX I I. ANALYTIC EXPRESSION FOR 3@,9 j 

The outer normal  derivative of G,(P,Pj on the f r e e  surface is  

[II- 11 

= 3 + J , + 3 3  

Using the same technique .as in Appendix I, one finds 

[II - 31 

[II-4] 

1 where Q3- TZU = Q(b’-f’) 
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It i s  noted that a special  case  of the reduction formula in Reference 1 3  

can be used to evaluate the following integral ,  which occurred  in $(p,p? 

Or, use 

which can be checked easi ly  by differentiation. 

When p o r p '  i s  zero,  

To increase  accuracy in numerical  evaluation, Equation [II-41 is 

replaced by (with b =  1 )  

b-p 9 p-{ and 6?-pp' can be evaluated accurately for  known 

d iscre te  values of p-p' and is evaluated by 

Next, 5 will be expressed in te rms  of e lementary functions. 

[TI - 4b3 

(11-4c] 
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Some fur ther  manipulation i s  required to  avoid precision problems 

f o r  p, p' smal l  o r  + small .  One finds 



Final ly ,  3 will be expressed  in  closed f o r m  as  follows; 
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[I1 - 6) 

/ 
There is  a ser ious  precision problem fo r  f ,p  smal l  in 

Equation 111-6). 

solved by employing the following equivalent f o r m .  

After manipulations, the precis ion problem is r e  - 

where 
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XF' fG, 
z; tp2+ /g* Where the t e r m s  in the inner bracket could be replaced by 

fo r  higher precision, which seems unnecessary as the e r r o r  in 8, is 

sufficiently small in the cr i t ical  range due to the factor  f'tf' . 

[I1 - 7 b] 

[II-7c] 

[II-7d] 

[I1 - 7 e] 
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where fur ther  manipulation may be needed f o r  very small ZF to 

avoid precision problems in the domain of smal l  p and p’ , 

/ 

When p o r  ? d o ,  4 + 0. 

It i s  important to note that whether p >?’ o r  p>p 

j: , 4 and & always approaches ze ro  a s  + + 0. Therefore ,  

fo r  a half-full tank /+=He 

kernel  function aside f rom an  apparent fac tor  of two difference 

mentioned previously , 

the sum of 

which is in agreement  with Budiansky’s 

[II-7 f ]  
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APPENDIX 111. SUBROUTINES DKEF AND N E F F  ( W I Z  PROGRAM) 

DKEF = DKEF (k, k, 1,  1, 1)  

N E F F  = NEFF ( ~ , X , X ' , l , l )  

-. l h e  unity arguments  a r e  actually dummies,  while the five a rgu-  

ments represent  five outputs. F o r  DKEF, the outputs a r e  K(k) = DKEF ( l ) ,  

E (k )  = DKEF ( 2 ) ,  (E(k)-K(k)  )/k2= DKEF ( 3 ) ,  K(k)-W/2 =DKEF (4),  and the 

number of i terations = DKEF (5) .  DKEF ( 3 )  i s  not obtained f r o m  DKEF (1)- 

DKEF ( 2 )  but i s  obtained af ter  a significant analytic subtraction in the pro-  

v gram. F o r  N E F F  the outputs a r e  F( p , k - k  ) = N E F F  ( l ) ,  E ( ,& ~ IC = K )  

= N E F F  (21, (E(  f , k )  - k s i n p  ) = N E F F ( 3 ) ,  the number of i terations for  

evaluating F ( , k)= N E F F  (4),  the number of i terations fo r  evaluating 

N E F F  (3)=  N E F F  ( 5 ) .  N E F F  ( 3 )  i s  evaluated a f te r  a significant analytic 

subtraction in the program while NEFF ( 2 )  is simply obtained f r o m  NEFF(3) 

$- k sin? . Although k' does not appear  in the functions sought, 

it i s  calculated f r o m  a formula  without subtraction, a s  one can easi ly  see  

significant f igures  of k1 would be lost i f  k is  near  unity. 

a r e  a l l  given in Reference 13. 

The basic formulae 

F o r  complete elliptic in tegra ls ,  the i terative 

method based on geometric and arithmetic means was employed. F o r  in-  

complete elliptical integrals ,  the iterative method based on inverse o rde r  

of transformation was employed in o rde r  to construct N E F F  (3 ) .  

g rams a r e  written in l1WIZl1  language for  GE 225 computers ,  which i s  

analogous to "FORTRAN" for  IBM computers,  and a r e  given on the following 

pages: 

The pro-  
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W I  2 SOURCE PROGRAM 

SEQ -LABL- - TY- STATE ME NT C- ZE -NZE - PL - MI -ANY 

- ARGPBKEF(2) 

- VA#l ,VB#ARGP,PI #3.1415926536 

- Qf?OD#ARG*ARG/( (ldrARGP)*(l&ARGP)) ,KN#QROD.NO&- - 

- KKI#0.5*dROD ,SUN#-O.5*( I M K )  

- KP#VB/VA,SUM#SUN,PN# 2*SQRT. (VB*VA)/(VA&VB) - - 

-KN#KN*KN/( ( lM")* ( 1 &PN) ) ,ROD2#KN ,ROD1 &ROD 

- wODRaoo1 dCRoD2dcR001 *Roo2 

- KK#KK*0.5*KN ,SUN#SWO,5%K 

- VATI#0.5* ( V A W B )  ,VBT#SQRT. (VA*VB) 

- V A ~ A T  ,VS#~BT ,NO#NO&~ 

- ABS. ( (wm-~ca )/QROD)-DELTA 

- ABS. ( (SUN-SUM)/SUN)-DELTA 

KNPHkY)ROD*PI *O. 5 , FKKNPHBQ. 5*P I - 
- DKEF( 1 ) # f ~  WK) 

- DKEF( 3) #SUN*FK $( (E(K)-K(K)) /K/K)-  - 

2)#FK&ARG*ARG*SUN*FK $E(K) 

4 ) #KNPH 

5)#NO 

$K ( K )-PI /2 

DKE F - -  - 
DKEF - -  - 
OKEF - -  - 
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W I Z  SOURCE PROGRAM 

C- ZE -NZE - PL - M I  -ANY STATEMENT - 
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587- 

590- 

59'- 

592- 

59 3- 

594- 

595, 

596- 

597- 

598- 

599, 

- 

W I  2 SOURCE PROGRAM 

STATEMENT 

- Kt<MK*K:V ,W&*W 

- SSN#SSN&AC*SSY&AS*CSH, N02#N02&1 $$ 

- OELN@ELN*DELN/( (1 WN)+ ( i MN@*RTKN) ) 

- KN&*RTKN/( I&N) 

- VN#--MM*OELN/( KK*KN ) 

- WJ#-ir,MM*DSN/SQEiif. (KK) 

- ENK3#ENKTMKK*VN-KAPA*UN $ E-K*SI N. (BETA) - - 
++ *+ - -  - - - - ABS. ( (ENKS-ENKT)/ENKS)-DELTA 

- N E F F ( ~ ) # I F  

- NEFF ( 2) #ENKS&KAPA*SSO 

.$ F(BETA,K.#KAPA) - - 
$ E(BETA,K) 

- -  - - - - 9 -  
- NEFF( 3)  #fNKS ,NEFF (4 ) #?dol ,NEfF ( 5  ) #NO2 

- $ENKS I S  E(BETA.K)-K*SIN(BETA),K~APA 



A P P E N D I X  IV. DERIVATION OF TN 

F o r  n(+%2, 9') the formulas 410.01 and 411.01 of Reference 12 

a r e  applicable,  in which dP= - -2 < o  / l Q = 9 ,  , i . e .  , 
-1- )Ip 

where 

and 
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[IV- 11 

[IV- la] 

[IV- 23 

To exploit the possibil i ty of gain in significant f igures ,  K- Kfd) 
/ -  += 

f r o m  e i ther  K(@ 
d* 

will not be computed by s imple subtraction of 

of the above equations. This difference i s  defined a s  flN. 

F r o m  simple algebraic manipulation of Equations (IV- 1) and ( IV-2) ,  

one finds 
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F o r  pi, p~ smal l ,  p i s  near 3 , k is  nea r  ze ro ,  thus 

n,(p,fi) i s  nea r  but l e s s  than unity. 

is  nea r  unity. 

f igures  through A, - /  

formula (#153.01, Ref. 12) res t r ic ted  to  the condition that 

t a n V =  1 ,  i. e . ,  

Also fo r  p., ,o; nea r  unity, k 

Equation (IV-3) may s t i l l  lose too many significant 

o r  /-  102 . One can fu r the r  apply the addition 

R t a n p -  

where iV2- /- 

Eliminating A,(fi A )  -1  f r o m  (IV-4), (IV- l a ) ,  (IV-2a),  one finds 

The ref o r e  

Applying the addition formula  (IV-4) again,  one finds 

[IV-6; 



where 

[IV- 83 

F 1 v - 9 ~ ~ 1  

1 

[lV-9b] 



There is  apparently a gain of significant f igures  of 

a r e  smal l  (d, R smal l )  if equation (IV-7) is used, provided that the 

f i r s t  t e r m  in the bracket  can be evaluated a s  accurately as  the second 

t e rm.  

for  equation (IV-9) .  

n, when f; , 

This i s  achieved by employing the subroutines DKEF and N E F F  



APPENDIX V .  X-FORCE ACTING ON THE TANK B Y  
INTEGRATION O F  PRESSURE 

Assume a velocity potential 

where the f i r s t  t e r m  is a particular solution satisfying the no rma l  

derivative condition on the sphere .  

have iio contribution to the normai  veiocity on the sphere .  

to  satisfy the f r e e  su r face  condition fo r  sinusoidal oscil lations 

& a r e  the eigen functions which 

In o r d e r  

one h a s  

2 

since 6; a r e  orthogonal on F,  &=L 4'd.S and & = ? i x  8,dS 

The p r e s s u r e  

The x-force can  be obtained by  d i rec t  integration of p r e s s u r e  

[v- 1) 
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since 

Equations [V-2, - 4 1  a r e  the same  

Reference 1 through Lagrangians’ 

resul ts  as that obtained in 

equations, 
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FIGURE 1. Graphical Illustration of Some Nomenclatures 
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FIGURE 2. Surface of Integration 



62  

R L 

c 
i 

U 

FIGURE 3a. Moment About Axis of Rotation 
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F I G U R E  3b. Moment of Tank in Pitching (Rocking) Oscillation 
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FIGURE 4a. Comparison of First N a t u r a l  Frequency with 
Data by Abramson, e t  a l . ,  (Ref. 15) 
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FIGURE 4b. Comparison of the First Three N a t u r a l  Frequencies  
with Experiments of Stofan- Armstead (Ref. 10) 
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ZF/d  = -//2 , U/d = 0.00828 

specific 
g r a v i t y  

A Water Y = / p = LO centipoise 

v Cloride Z = 1.34 p = Q44~ent ipoise  

+ Present rhcory 
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w: d - 
9 

NATURAL FREQUENCY PARAMETER BASED ON DIAMETER 

FIGURE 5. Comparison of Force  Response f o r  Quarter-Ful l  Tank 
with Experiments by Abramson, et a l . ,  (Ref. 15) 
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FIGURE 6 .  Natural  Frequencies  Given by Riley-Trembath (Ref. 17) 


